Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Talanta ; 275: 126086, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38663071

RESUMO

Laser-induced breakdown spectroscopy (LIBS), as an elemental composition analysis technique, has many unique advantages and great potential for applications in water detection. However, the quality of LIBS spectral signals, such as signal-to-noise ratio and stability, is often poor due to the matrix effects of water, limiting its practical performance. To effectively remove the inherent weak radiation in experimental spectral data that can be easily mistaken for noise, this paper proposes a denoising algorithm for processing spectral data using a self-built blank sample spectral database of deionized water samples, and designs a complete data processing workflow. It includes steps such as blank sample data screening, internal standard correction, blank sample correction, and spectral smoothing. Against the backdrop of marine applications, experimental spectral data for target elements Na, Mg, Ca, K, Sr, and Li were processed with this algorithm. The results show that after algorithm processing, the spectral quality was significantly improved, with the signal-to-noise ratio and detection limits of various elements improved by at least one order of magnitude. The signal-for Li increased by up to 36 times, and the detection limit for K decreased by up to 25.2 times. Additionally, tiny spectral peaks that could not be observable in the original spectral data could be effectively extracted after processing. From a technical implementation perspective, the database establishment and data process are simple and practical, with universal applicability. Therefore, this method has good potential and wide foregrounds in many other water sample LIBS detection technologies.

2.
ISME Commun ; 4(1): ycae026, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38559570

RESUMO

Microeukaryotic plankton communities are keystone components for keeping aquatic primary productivity. Currently, variations in microeukaryotic plankton diversity have often been explained by local ecological factors but not by evolutionary constraints. We used amplicon sequencing of 100 water samples across five years to investigate the ecological preferences of the microeukaryotic plankton community in a subtropical riverine ecosystem. We found that microeukaryotic plankton diversity was less associated with bacterial abundance (16S rRNA gene copy number) than bacterial diversity. Further, environmental effects exhibited a larger influence on microeukaryotic plankton community composition than bacterial community composition, especially at fine taxonomic levels. The evolutionary constraints of microeukaryotic plankton community increased with decreasing taxonomic resolution (from 97% to 91% similarity levels), but not significant change from 85% to 70% similarity levels. However, compared with the bacterial community, the evolutionary constraints were shown to be more affected by environmental variables. This study illustrated possible controlling environmental and bacterial drivers of microeukaryotic diversity and community assembly in a subtropical river, thereby indirectly reflecting on the quality status of the water environment by providing new clues on the microeukaryotic community assembly.

3.
Plant J ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581688

RESUMO

Moving from sole cropping to intercropping is a transformative change in agriculture, contributing to yield. Soybeans adapt to light conditions in intercropping by adjusting the onset of reproduction and the inflorescence architecture to optimize reproductive success. Maize-soybean strip intercropping (MS), maize-soybean relay strip intercropping (IS), and sole soybean (SS) systems are typical soybean planting systems with significant differences in light environments during growth periods. To elucidate the effect of changes in the light environment on soybean flowering processes and provide a theoretical basis for selecting suitable varieties in various planting systems to improve yields, field experiments combining planting systems (IS, MS, and SS) and soybean varieties (GQ8, GX7, ND25, and NN996) were conducted in 2021 and 2022. Results showed that growth recovery in the IS resulted in a balance in the expression of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) in the meristematic tissues of soybeans, which promoted the formation of new branches or flowers. IS prolonged the flowering time (2-7 days) and increased the number of forming flowers compared with SS (93.0 and 169%) and MS (67.3 and 103.3%) at the later soybean flowering stage. The higher carbon and nitrogen content in the middle and bottom canopies of soybean contributed to decreased flower abscission by 26.7 and 30.2%, respectively, compared with SS. Canopy light environment recovery promoted branch and flower formation and transformation of flowers into pods with lower flower-pod abscission, which contributed to elevating soybean yields in late-maturing and multibranching varieties (ND25) in IS.

4.
Sensors (Basel) ; 24(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474978

RESUMO

The synergistic effects on the 0.18 µm PPD CISs induced by neutron displacement damage and gamma ionization damage are investigated. The typical characterizations of the CISs induced by the neutron displacement damage and gamma ionization damage are presented separately. The CISs are irradiated by reactor neutron beams up to 1 × 1011 n/cm2 (1 MeV neutron equivalent fluence) and 60Co γ-rays up to the total ionizing dose level of 200 krad(Si) with different sequential order. The experimental results show that the mean dark signal increase in the CISs induced by reactor neutron radiation has not been influenced by previous 60Co γ-ray radiation. However, the mean dark signal increase in the CISs induced by 60Co γ-ray radiation has been remarkably influenced by previous reactor neutron radiation. The synergistic effects on the PPD CISs are discussed by combining the experimental results and the TCAD simulation results of radiation damage.

5.
J Clin Invest ; 134(6)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38488001

RESUMO

Breast cancer stem cells (BCSCs) mitigate oxidative stress to maintain their viability and plasticity. However, the regulatory mechanism of oxidative stress in BCSCs remains unclear. We recently found that the histone reader ZMYND8 was upregulated in BCSCs. Here, we showed that ZMYND8 reduced ROS and iron to inhibit ferroptosis in aldehyde dehydrogenase-high (ALDHhi) BCSCs, leading to BCSC expansion and tumor initiation in mice. The underlying mechanism involved a two-fold posttranslational regulation of nuclear factor erythroid 2-related factor 2 (NRF2). ZMYND8 increased stability of NRF2 protein through KEAP1 silencing. On the other hand, ZMYND8 interacted with and recruited NRF2 to the promoters of antioxidant genes to enhance gene transcription in mammospheres. NRF2 phenocopied ZMYND8 to enhance BCSC stemness and tumor initiation by inhibiting ROS and ferroptosis. Loss of NRF2 counteracted ZMYND8's effects on antioxidant genes and ROS in mammospheres. Interestingly, ZMYND8 expression was directly controlled by NRF2 in mammospheres. Collectively, these findings uncover a positive feedback loop that amplifies the antioxidant defense mechanism sustaining BCSC survival and stemness.


Assuntos
Neoplasias da Mama , Ferroptose , Fator 2 Relacionado a NF-E2 , Células-Tronco Neoplásicas , Transativadores , Animais , Camundongos , Antioxidantes , Ferroptose/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transativadores/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia
6.
Sci Rep ; 14(1): 6379, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493244

RESUMO

The regulatory mechanism of long non-coding RNAs (lncRNAs) in autophagy is as yet not well established. In this research, we show that the long non-coding RNA MLLT4 antisense RNA 1 (lncRNA MLLT4-AS1) is induced by the MTORC inhibitor PP242 and rapamycin in cervical cells. Overexpression of MLLT4-AS1 promotes autophagy and inhibits tumorigenesis and the migration of cervical cancer cells, whereas knockdown of MLLT4-AS1 attenuates PP242-induced autophagy. Mass spectrometry, RNA fluorescence in situ hybridization (RNA-FISH), and immunoprecipitation assays were performed to identify the direct interactions between MLLT4-AS1 and other associated targets, such as myosin-9 and autophagy-related 14(ATG14). MLLT4-AS1 was upregulated by H3K27ac modification with PP242 treatment, and knockdown of MLLT4-AS1 reversed autophagy by modulating ATG14 expression. Mechanically, MLLT4-AS1 was associated with the myosin-9 protein, which further promoted the transcription activity of the ATG14 gene. In conclusion, we demonstrated that MLLT4-AS1 acts as a potential tumor suppressor in cervical cancer by inducing autophagy, and H3K27ac modification-induced upregulation of MLLT4-AS1 could cause autophagy by associating with myosin-9 and promoting ATG14 transcription.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo do Útero , Feminino , Humanos , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/genética , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Proliferação de Células/genética , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Proteínas do Citoesqueleto/metabolismo , Miosinas/genética , Miosinas/metabolismo , Autofagia/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Relacionadas à Autofagia/genética
7.
Angew Chem Int Ed Engl ; 63(15): e202320218, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38353181

RESUMO

The development of photocatalysts with continuous electron extraction and rapid proton transfer could kinetically accelerate the artificial photosynthesis, but remains a challenge. Herein, we report the topology-guided synthesis of a high-crystalline triazine covalent organic framework (COF) decorated by uniformly distributed polar oxygen functional groups (sulfonic group or carboxyl) as the strong electron/proton extractor for efficient photocatalytic H2O2 production. It was found that the polarity-based proton transfer as well as electron enrichment in as-obtained COFs played a crucial role in improving the H2O2 photosynthesis efficiency (i.e., with an activity order of sulfonic acid- (SO3H-COF)>carboxyl- (COOH-COF)>hydrogen- (H-COF) functionalized COFs). The strong polar sulfonic acid group in the high-crystalline SO3H-COF triggered a well-oriented built-in electric field and more hydrophilic surface, which serves as an efficient carrier extractor enabling a continuous transportation of the photogenerated electrons and interfacial proton to the active sites (i.e., C atoms linked to -SO3H group). As-accelerated proton-coupled electron transfer (PCET), together with the stabilized O2 adsorption finally leads to the highest H2O2 production rate of 4971 µmol g-1 h-1 under visible light irradiation. Meanwhile, a quantum yield of 15 % at 400 nm is obtained, superior to most reported COF-based photocatalysts.

8.
J Sci Food Agric ; 104(3): 1408-1419, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37782057

RESUMO

BACKGROUND: Astaxanthin (AST) is approved by the US Food and Drug Administration (FDA) as a safe dietary supplement for humans. As a potent lipid-soluble keto-carotenoid, it is widely used in food, cosmetics, and the pharmaceutical industry. However, its low solubility limits its powerful biological activity and its application in these fields. This study aims to develop a delivery system to address the low solubility and bioavailability of AST and to enhance its antioxidant capacity. RESULTS: Astaxanthin-loaded composite micelles were successfully prepared via coaxial electrospray technology. Astaxanthin existed in the amorphous state in the electro-sprayed formulation with an approximate particle size of 186.28 nm and with a polydispersity index of 0.243. In this delivery system, Soluplus and copovidone (PVPVA 64) were the main polymeric matrix for AST, which then released the drug upon contact with aqueous media, resulting in an overall increase in drug solubility and a release rate of 94.08%. Meanwhile, lecithin, and Polyethylene glycol-grafted Chitosan (PEG-g-CS) could support the absorption of AST in the gastrointestinal tract, assisting transmembrane transport. The relative bioavailability reached about 308.33% and the reactive oxygen species (ROS) scavenging efficiency of the formulation was 44.10%, which was 1.57 times higher than that of free astaxanthin (28.10%) when both were at the same concentration level based on astaxanthin. CONCLUSION: Coaxial electrospray could be applied to prepare a composite micelles system for the delivery of poorly water-soluble active ingredients in functional food, cosmetics, and medicine. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Micelas , Humanos , Portadores de Fármacos , Disponibilidade Biológica , Solubilidade , Tamanho da Partícula , Água , Administração Oral
9.
Mol Ther ; 31(12): 3520-3530, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37915172

RESUMO

Otoferlin (OTOF) gene mutations represent the primary cause of hearing impairment and deafness in auditory neuropathy. The c.2485C>T (p. Q829X) mutation variant is responsible for approximately 3% of recessive prelingual deafness cases within the Spanish population. Previous studies have used two recombinant AAV vectors to overexpress OTOF, albeit with limited efficacy. In this study, we introduce an enhanced mini-dCas13X RNA base editor (emxABE) delivered via an AAV9 variant, achieving nearly 100% transfection efficiency in inner hair cells. This approach is aimed at treating OTOFQ829X, resulting in an approximately 80% adenosine-to-inosine conversion efficiency in humanized OtofQ829X/Q829X mice. Following a single scala media injection of emxABE targeting OTOFQ829X (emxABE-T) administered during the postnatal day 0-3 period in OtofQ829X/Q829X mice, we observed OTOF expression restoration in nearly 100% of inner hair cells. Moreover, auditory function was significantly improved, reaching similar levels as in wild-type mice. This enhancement persisted for at least 7 months. We also investigated P5-P7 and P30 OtofQ829X/Q829X mice, achieving auditory function restoration through round window injection of emxABE-T. These findings not only highlight an effective therapeutic strategy for potentially addressing OTOFQ829X-induced hearing loss but also underscore emxABE as a versatile toolkit for treating other monogenic diseases characterized by premature termination codons.


Assuntos
Surdez , Perda Auditiva Central , Perda Auditiva , Animais , Camundongos , Edição de Genes , Perda Auditiva/genética , Perda Auditiva/terapia , Mutação
10.
Sci Total Environ ; 904: 166758, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673251

RESUMO

Afforestation currently makes a great contribution to carbon uptake in terrestrial ecosystems, while dramatically affects soil ecosystem functions too. Little is known, however, about the changes in soil fungal functional groups and their interactions following afforestation. Here, based on high-throughput sequencing and FUNGuild annotation, we investigated the functional characteristics of soil fungi as well as environmental factors in a watershed where paddy field and dry farmland were changed to eucalyptus plantation. The results showed that afforestation on paddy field resulted in greater changes in diversity, community structure and taxon interactions of fungal functional groups than afforestation on dry farmland. The most complex and distinctive community structure was found in eucalyptus plantation, as well as the greatest taxon interactions, and the lowest alpha-diversity of functional guilds of symbiotrophic fungi because of the dominant ectomycorrhizal fungi. Paddy field exhibited the highest proportion of saprotrophic fungi, but the lowest taxonomic diversity of saprotrophic and pathotrophic fungi. The taxonomic diversity of undefined saprotrophic fungi shaped the differences in community structure and network complexity between eucalyptus plantation and cropland. Limited cooperation within dominant fungi was the main reason for the establishment of a loose co-occurrence network in paddy field. From croplands to artificial forests, reduced soil pH boosted the taxonomic diversity of fungal functional groups. All of these findings suggested that afforestation may lead to an increase in the taxonomic diversity of soil fungal functional groups, which would further intensify the taxon interactions.


Assuntos
Ecossistema , Micorrizas , Fazendas , Fungos , Microbiologia do Solo , Solo/química , Florestas
11.
Environ Microbiol Rep ; 15(6): 769-782, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688478

RESUMO

Microeukaryotes are key for predicting the change of ecosystem processes in the face of a disturbance. However, their vertical responses to multiple interconnected factors caused by water mixing remain unknown. Here, we conducted a 12-month high-frequency study to compare the impacts of mixing disturbances on microeukaryotic community structure and stability over different depths in a stratified reservoir. We demonstrate that core and satellite microeukaryotic compositions and interactions in surface waters were not resistant to water mixing, but significantly recovered. This was because the water temperature rebounded to the pre-mixing level. Core microeukaryotes maintained community stability in surface waters with high recovery capacity after water mixing. In contrast, the changes in water temperature, chlorophyll-a, and nutrients resulted in steep and prolonged variations in the bottom core and satellite microeukaryotic compositions and interactions. Under low environmental fluctuation, the recovery of microbial communities did not affect nutrient cycling in surface waters. Under high environmental fluctuation, core and satellite microeukaryotic compositions in bottom waters were significantly correlated with the multi-nutrient cycling index. Our findings shed light on different mechanisms of plankton community resilience in reservoir ecosystems to a major disturbance over depths, highlighting the role of bottom microeukaryotes in nutrient cycling.


Assuntos
Ecossistema , Microbiota , Plâncton , Água , Temperatura
13.
Mol Ecol ; 32(17): 4940-4952, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452629

RESUMO

Numerous studies have investigated the spatiotemporal variability in water microbial communities, yet the effects of relic DNA on microbial community profiles, especially microeukaryotes, remain far from fully understood. Here, total and active bacterial and microeukaryotic community compositions were characterized using propidium monoazide (PMA) treatment coupled with high-throughput sequencing in a river-reservoir ecosystem. Beta diversity analysis showed a significant difference in community composition between both the PMA untreated and treated bacteria and microeukaryotes; however, the differentiating effect was much stronger for microeukaryotes. Relic DNA only resulted in underestimation of the relative abundances of Bacteroidota and Nitrospirota, while other bacterial taxa exhibited no significant changes. As for microeukaryotes, the relative abundances of some phytoplankton (e.g. Chlorophyta, Dinoflagellata and Ochrophyta) and fungi were greater after relic DNA removal, whereas Cercozoa and Ciliophora showed the opposite trend. Moreover, relic DNA removal weakened the size and complexity of cross-trophic microbial networks and significantly changed the relationships between environmental factors and microeukaryotic community composition. However, there was no significant difference in the rates of temporal community turnover between the PMA untreated and treated samples for either bacteria or microeukaryotes. Overall, our results imply that the presence of relic DNA in waters can give misleading information of the active microbial community composition, co-occurrence networks and their relationships with environmental conditions. More studies of the abundance, decay rate and functioning of nonviable DNA in freshwater ecosystems are highly recommended in the future.


Assuntos
Ecossistema , Microbiota , Rios/microbiologia , Microbiota/genética , DNA/genética , Fitoplâncton , Consórcios Microbianos , Bactérias/genética
14.
Talanta ; 264: 124780, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37302350

RESUMO

The development of highly sensitive and rapid detection technology for heavy metal elements in water is of great significance to the monitoring of water environmental pollution, sewage discharge control and other application fields. As an alternative detection method with great potential in the above fields, LIBS technology still has some problems that need to be solved. To improve the sensitivity and efficiency of LIBS detection of trace metals in water, a new method Micro-hole Array Sprayer combined with an Organic Membrane to assist LIBS (MASOM-LIBS) was proposed in this study. In this method, water samples were transformed into a large number of micrometer droplets by a micro-hole array injection device and were sprayed onto a rotating polypropylene organic film. After natural drying, LIBS analysis was performed. The test results of the mixed solution show that plasma with lower electron density and higher electron temperature can be obtained after full drying, the signal intensity will be stronger, and the stability can be reduced to less than 1%. The experimental results of Cu, Cd, Mn, Pb, Cr and Sr as target elements show that the LODs of the MASOM-LIBS method for most elements is less than 0.1 mg/L when the detection time is less than 3 min, which has certain advantages over similar LIBS methods. If the detection time is increased appropriately, the LODs of this method is even expected to be reduced to less than 0.01 mg/L. These results indicate that MASOM-LIBS is a feasible method to improve the sensitivity and speed of the detection of trace heavy elements in liquid samples and can facilitate the wide application of LIBS in water quality monitoring. In view of the short detection time, high sensitivity and low LODs of MASOM-LIBS, this method is expected to be developed into a water trace heavy metal detection technology with fully automatic, real-time, highly sensitive and multi-element detection technology in the future.


Assuntos
Metais Pesados , Oligoelementos , Oligoelementos/análise , Metais Pesados/análise , Monitoramento Ambiental/métodos
15.
Front Immunol ; 14: 1135588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215132

RESUMO

Uncovering the mechanism underlying the pathogenesis of Edwardsiella piscicida-induced enteritis is essential for global aquaculture. In the present study, we identified E. piscicida as a lethal pathogen of the big-belly seahorse (Hippocampus abdominalis) and revealed its pathogenic pattern and characteristics by updating our established bacterial enteritis model and evaluation system. Conjoint analysis of metagenomic and metabolomic data showed that 15 core virulence factors could mutually coordinate the remodeling of intestinal microorganisms and host metabolism and induce enteritis in the big-belly seahorse. Specifically, the Flagella, Type IV pili, and Lap could significantly increase the activities of the representative functional pathways of both flagella assembly and bacterial chemotaxis in the intestinal microbiota (P < 0.01) to promote pathogen motility, adherence, and invasion. Legiobactin, IraAB, and Hpt could increase ABC transporter activity (P < 0.01) to compete for host nutrition and promote self-replication. Capsule1, HP-NAP, and FarAB could help the pathogen to avoid phagocytosis. Upon entering epithelial cells and phagocytes, Bsa T3SS and Dot/Icm could significantly increase bacterial secretion system activity (P < 0.01) to promote the intracellular survival and replication of the pathogen and the subsequent invasion of the neighboring tissues. Finally, LPS3 could significantly increase lipopolysaccharide biosynthesis (P < 0.01) to release toxins and kill the host. Throughout the pathogenic process, BopD, PhoP, and BfmRS significantly activated the two-component system (P < 0.01) to coordinate with other VFs to promote deep invasion. In addition, the levels of seven key metabolic biomarkers, Taurine, L-Proline, Uridine, L-Glutamate, Glutathione, Xanthosine, and L-Malic acid, significantly decreased (P < 0.01), and they can be used for characterizing E. piscicida infection. Overall, the present study systematically revealed how a combination of virulence factors mediate E. piscicida-induced enteritis in fish for the first time, providing a theoretical reference for preventing and controlling this disease in the aquaculture of seahorses and other fishes.


Assuntos
Enterite , Microbioma Gastrointestinal , Smegmamorpha , Animais , Fatores de Virulência/metabolismo , Virulência , Smegmamorpha/metabolismo , Peixes/metabolismo , Metaboloma
16.
Front Cardiovasc Med ; 10: 1143119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034343

RESUMO

Background: Among patients with diabetes mellitus (DM) and chronic coronary syndrome (CCS), non-culprit lesions (NCLs) are responsible for a substantial number of future major adverse cardiovascular events (MACEs). Thus, we aimed to establish the natural history relationship between adverse plaque characteristics (APCs) of NCLs non-invasively identified by coronary computed tomography angiography (CCTA) and subsequent MACEs in these patients. Methods: Between January 2016 and January 2019, 523 patients with DM and CCS were included in the present study after CCTA and successful percutaneous coronary intervention (PCI). All patients were followed up for MACEs (the composite of cardiac death, myocardial infarction, and unplanned coronary revascularization) until January 2022, and the independent clinical event committee classified MACEs as indeterminate, culprit lesion (CL), and NCL-related. The primary outcome was MACEs arising from untreated NCLs during the follow-up. The association between plaque characteristics detected by CCTA and primary outcomes was determined by Marginal Cox proportional hazard regression. Results: Overall, 1,248 NCLs of the 523 patients were analyzed and followed up for a median of 47 months. The cumulative rates of indeterminate, CL, and NCL-related MACEs were 2.3%, 14.5%, and 20.5%, respectively. On multivariate analysis, NCLs associated with recurrent MACEs were more likely to be characterized by a plaque burden >70% [hazard ratio (HR), 4.35, 95% confidence interval (CI): 2.92-6.44], a low-density non-calcified plaque (LDNCP) volume >30 mm3 (HR: 3.40, 95% CI: 2.07-5.56), a minimal luminal area (MLA) <4 mm2 (HR: 2.30, 95% CI: 1.57-3.36), or a combination of three APCs (HR: 13.69, 95% CI: 9.34-20.12, p < 0.0001) than those not associated with recurrent MACEs. Sensitivity analysis regarding all indeterminate MACEs as NCL-related ones demonstrated similar results. Conclusions: In DM patients who presented with CCS and underwent PCI, half of the MACEs occurring during the follow-up were attributable to recurrence at the site of NCLs. NCLs responsible for unanticipated MACEs were frequently characterized by a large plaque burden and LDNCP volume, a small MLA, or a combination of these APCs, as determined by CCTA.

17.
Biopharm Drug Dispos ; 44(2): 137-146, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36999487

RESUMO

The purpose of this work was to fabricate the microencapsulation of capsaicin using electrospray technology and polyvinylpyrrolidone (PVP) K30 as a carrier. The morphological characteristics of capsaicin-PVP electrosprayed microencapsulation complex under different processing parameters were observed by scanning electron microscope (SEM), while the best process was determined, wherein it comprised of 10 KV (voltage), 0.8 ml·h-1 (solution flow rate), 0.9 mm (the inner diameter of the needle), and 10 cm (receiving distance). The X-ray diffraction results of the electrosprayed complex showed that capsaicin was present in the carrier in an amorphous form. The drug release properties of capsaicin powder and electrosprayed complex in different media were investigated. The results showed that in vitro release rates of the capsaicin complex in different media were much higher than that of capsaicin powder, with correspondingly improved bioavailability, defined by intravenous and oral dosing in rats in vivo, for the electrosprayed complex compared to that of capsacin powder. The dose absorbed of the electrosprayed complex was 2.2-fold that of the capsaicin powder. In short, electrospray technology can be used to prepare capsaicin-loaded electrosprayed microencapsulation complex. This technique can improve the solubility and bioavailability of capsaicin, and provide a new idea for the solubilization of other insoluble drugs.


Assuntos
Capsaicina , Povidona , Ratos , Animais , Disponibilidade Biológica , Pós , Administração Oral , Solubilidade
18.
Dev Cell ; 58(5): 348-360.e6, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36868235

RESUMO

Mammalian hematopoietic stem cells (HSCs) colonize the bone marrow during late fetal development, and this becomes the major site of hematopoiesis after birth. However, little is known about the early postnatal bone marrow niche. We performed single-cell RNA sequencing of mouse bone marrow stromal cells at 4 days, 14 days, and 8 weeks after birth. Leptin-receptor-expressing (LepR+) stromal cells and endothelial cells increased in frequency during this period and changed their properties. At all postnatal stages, LepR+ cells and endothelial cells expressed the highest stem cell factor (Scf) levels in the bone marrow. LepR+ cells expressed the highest Cxcl12 levels. In early postnatal bone marrow, SCF from LepR+/Prx1+ stromal cells promoted myeloid and erythroid progenitor maintenance, while SCF from endothelial cells promoted HSC maintenance. Membrane-bound SCF in endothelial cells contributed to HSC maintenance. LepR+ cells and endothelial cells are thus important niche components in early postnatal bone marrow.


Assuntos
Medula Óssea , Receptores para Leptina , Animais , Camundongos , Células da Medula Óssea , Células Endoteliais , Hematopoese , Células-Tronco Hematopoéticas , Mamíferos , Receptores para Leptina/genética , Fator de Células-Tronco , Nicho de Células-Tronco
19.
J Sci Food Agric ; 103(7): 3628-3637, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840513

RESUMO

BACKGROUND: Astaxanthin is a type of food-derived active ingredient with antioxidant, antidiabetic and non-toxicity functions, but its poor solubility and low bioavailability hinder further application in food industry. In the present study, through inclusion technologies, micellar solubilization and electrospray techniques, we prepared astaxanthin nanoparticles before optimizing the formulation to regulate the physical and chemical properties of micelles. We accomplished the preparation of astaxanthin nanoparticle delivery system based on single needle electrospray technology through use of 2-hydroxypropyl-ß-cyclodextrin and Soluplus® to improveme the release behavior of the nanocarrier. RESULTS: Through this experiment, we successfully prepared astaxanthin nanoparticles with a particle size of approximately 80 nm, which was further verified with scanning electron microscopy and transmission electron microscopy. Furthermore, the encapsulation of astaxanthin molecules into the carrier nanoparticles was verified via the results of attenuated total reflectance intensity and X-ray powder diffraction techniques. The in vitro release behavior of astaxanthin nanoparticles was different in media that contained 0.5% Tween 80 (pH 1.2, 4.5 and 6.8) buffer solution and distilled water. Also, we carried out a pharmacokinetic study of astaxanthin nanoparticles, in which it was observed that astaxanthin nanoparticle showed an effect of immediate release and significant improved bioavailability. CONCLUSION: 2-hydroxypropyl-ß-cyclodextrin and Soluplus® were used in the present study as a hydrophilic nanocarrier that could provide a simple way of encapsulating natural function food with repsect to improving the solubility and bioavailability of poorly water-soluble ingredients. © 2023 Society of Chemical Industry.


Assuntos
Nanopartículas , 2-Hidroxipropil-beta-Ciclodextrina/química , Nanopartículas/química , Solubilidade , Disponibilidade Biológica , Tecnologia , Micelas , Água/química
20.
Nurs Open ; 10(1): 105-114, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35773943

RESUMO

AIM: The purpose of this study was to explore the relationship among kinesiophobia, self-efficacy and self-management behaviour related to physical activity (SMBPA) in Chinese patients with coronary heart disease(CHD) and the mediating role of self-efficacy between kinesiophobia and SMBPA in Chinese patients with CHD. DESIGN: A cross-sectional study. METHODS: From March to July 2021, 540 Chinese patients with CHD were investigated with three scales using convenient sampling method. The data were analysed with Pearson correlation, univariate analysis, multivariate linear regression and the PROCESS macro. RESULTS: 509 valid questionnaires were collected (effective response rate: 94.2%). Low kinesiophobia and high self-efficacy were related to high-levels of SMBPA (all p < .01). Besides, the effect of kinesiophobia on SMBPA was partially mediated by self-efficacy, and the mediation effect accounted for 35.59% of the total effect.


Assuntos
Doença das Coronárias , Autogestão , Humanos , Autoeficácia , Estudos Transversais , Cinesiofobia , População do Leste Asiático , Exercício Físico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...